Zero-Inflated Poisson XLindley Distribution for Medical Science Modeling
DOI:
https://doi.org/10.58575/4cwngm09Keywords:
Poisson XLindley distribution, Overdispersion, Zero inflation, Count dataAbstract
This paper introduces and investigates a new one-parameter zero-inflated count distribution. The new model is named the zero-inflated Poisson XLindley (ZIPXL) distribution. The fundamental mathematical characteristics of the ZIPXL model - including survival analysis, hazard function, generating functions, moments (mean and variance), dispersion index, skewness coefficient, kurtosis, and order statistics—are derived. Maximum likelihood is used to estimate the parameters of the ZIPXL distribution. An intensive simulation study is conducted to assess the performance of these estimators. The research demonstrates the practical utility and flexibility of the new distribution in managing excess zero data in real-world applications, using two real-world datasets from the medical field. The research compares the ZIPXL distribution with the zero-inflated Poisson moment exponential distribution and the zero-inflated Poisson distribution. Provides evidence that the ZIPXL distribution performs effectively in examining overdispersed count data.
Downloads
References
Ahsan-ul-Haq, M., Al-Bossly, A., El-Morshedy, M., & Eliwa, M. S. (2022). Poisson Xlindley distribution for count data: Statistical and reliability properties with estimation techniques and inference. Computational Intelligence and neuroscience, 2022(1), 6503670. https://doi.org/10.1155/2022/6503670
Aryuyuen, S., Bodhisuwan, W., & Supapakorn, T. (2014). Zero-inflated negative binomial-generalized exponential distribution and its applications. Songklanakarin Journal of Science and Technology, 36(4), 483–491.
B¨ohning, D. (1998). Zero-inflated Poisson models and CA MAN: A tutorial collection of evidence. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 40(7), 833–843. https://doi.org/10.1002/(SICI)15214036(199811)40:7⟨833::AID-BIMJ833⟩3.0.CO;2-O
Diekmann, A. (1981). Forschungsnotiz. ein einfaches stochastisches modell zur analyse von h¨aufigkeitsverteilungen abweichenden verhaltens. Zeitschrift f¨ur Soziologie, 10(3), 319–325. https://doi.org/10.1515/zfsoz-1981-0307
Junnumtuam, S., Niwitpong, S.-A., & Niwitpong, S. (2022). A zero-and-one inflated cosine geometric distribution and its application. Mathematics, 10(21), 4012. https://doi.org/10.3390/math10214012
Kibika, S. A. (2020). The zero inflated negative binomial-shanker distribution and its application to hiv exposed infant data [Doctoral dissertation, Strathmore University].
Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14. https://doi.org/10.2307/1269547
Leroux, B. G., & Puterman, M. L. (1992). Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. Biometrics, 545-558. https://doi.org/10.2307/2532308
Rahman, T., Hazarika, P. J., Ali, M. M., & Barman, M. P. (2022). Three-inflated Poisson distribution and its application in suicide cases of india during COVID-19 pandemic. Annals of data science, 9(5), 1103–1127.
Sabri, S. R. M., & Adetunji, A. A. (2023). Zero-inflated Poisson transmuted weighted exponential distribution: Properties and applications. Borneo Science— The Journal of Science and Technology, 44(2). https://doi.org/10.51200/bsj.v44i2
Sharma, A., & Landge, V. (2013). Zero-inflated negative binomial for modeling heavy vehicle crash rate on indian rural highway. International Journal of Advances in Engineering & Technology, 5(2), 292.
Shukla, K. K., & Yadava, K. (2006). The distribution of the number of migrants at the household level. Journal of Population and Social Studies, 14(2), 153–166.
Skinder, Z., Ahmad, P. B., & Elah, N. (2023). A new zero-inflated count model with applications in medical sciences. Reliability: Theory & Applications, 18(3 (74)), 841–855.
Van den Broek, J. (1995). A score test for zero inflation in a Poisson distribution. Biometrics, 738–743. https://doi.org/10.2307/2532959
Wani, M. K., & Ahmad, P. B. (2023). Zero-inflated Poisson-Akash distribution for count data with excessive zeros. Journal of the Korean Statistical Society, 52(3), 647–675. https://doi.org/10.1007/s42952-023-00216-5
Zamani, H., Pakdaman, Z., & Shekari, M. (2023). Zero-inflated Poisson quasi-lindley regression for modeling number of doctor visit data. Communications in Statistics: Case Studies, Data Analysis and Applications, 9(1), 1–15. https://doi.org/10.1080/23737484.2023.2164941








